
Unit Testing & UML & Data
Dictionary &
Big O Complexity &
Vector & Deque

Lecture 4

Data Structures and Abstractions

Object Orientation in C++

• In C++ we set up three files for each class:
– The header file (.h) stores the class interface and data definition.

– The implementation file (.cpp) stores the class implementation.

– The (unit) test file (.cpp) tests every method for all parameter bounds.

• Rules:
– Each class should represent only ONE thing. (cohesion)

– Every class must be tested in isolation in a test file.

– The testing must occur before the class is used by any other class.

– For every method in the class, you need to test all possible cases. This
forms the class’s Test Plan.

• 2

The Light Class

• The previous lecture notes looked at a light class.

• This class stored information about a light: its colour, radius and whether it
was switched on.

• We therefore start by coding a header file (light.h) with this information.

• Remember that we code and test incrementally.

• Therefore we start the class with the bare minimum:
– Constructor (initialiser).
– Destructor (the opposite of the constructor). //?? Needed [1]
– Output operator to test that data is what we expect. // for debugging only
– Attribute declarations.

• 3

• // Light.h
• // Class representing a light
• // Some methods shown, other methods you write.
• // Version
• // 01 - Nicola Ritter
• // modified smr
• //--

• #ifndef LIGHT_H
• #define LIGHT_H

• //--

• #include <iostream>
• #include <string> // OO string

• using namespace std;

• //--

• 4

Ensures that this
file is only

included in the
compilation

once.

• class Light
• { // only some methods shown. You write the other methods needed.
• // convert normal comments to doxygen style comments
• public:
• Light () {Clear ();}
• ~Light () {};

• void Clear ();
•

• // provides a default output method, but be careful about friends
• // friends can be terrible, as they can mess up your privates
• friend ostream& operator << (ostream &ostr, const Light &light);// [1]

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

• //--

• #endif

• 5

Class Name –
capital first letter

• class Light
• {
• public:
• Light () {Clear ();}
• ~Light () {};

• void Clear ();
• // friends are no good in most situations
• friend ostream& operator << (ostream &ostr, const Light &light);

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

• //--

• #endif

• 6

public keyword:
what follows is
the interface.

• class Light
• {
• public:
• Light () {Clear ();}
• ~Light () {};

• void Clear ();
• // can do without friends
• friend ostream& operator << (ostream &ostr, const Light &light);

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

• //--

• #endif

• 7

private keyword:
what follows is

hidden from
outside the class.

• class Light
• {
• public:
• Light () {Clear ();}
• ~Light () {};

• void Clear ();
• // why have friends?
• friend ostream& operator << (ostream &ostr, const Light &light);

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

• //--

• #endif

• 8

all data must
always be private

or protected if
you want sub-

classes

• class Light
• {
• public:
• Light () {Clear ();}
• ~Light () {};

• void Clear ();
• // keep away from friends
• friend ostream& operator << (ostream &ostr, const Light &light);

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

• //--

• #endif

• 9

Constructor:
code is

automatically run
when an object is

declared. [1]

• class Light
• {
• public:
• Light () {Clear ();} // [1] information hiding?
• ~Light () {};

• void Clear ();
• // friends can be overrated [2]
• friend ostream& operator << (ostream &ostr, const Light &light);

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

• //--

• #endif

• 10

Inline code can
be used if a
method has

exactly one line
only. [1]

• class Light
• {
• public:
• Light () {Clear ();}
• ~Light () {};

• void Clear ();
• //Even on facebook, friends can be no good
• friend ostream& operator << (ostream &ostr, const Light &light);

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

• //--

• #endif

• 11

Destructor: code
is automatically

run when an
object goes out

of scope.

• class Light
• {
• public:
• Light () {Clear ();}
• ~Light () {};

• void Clear ();
• //Sun Tzu: Hold your friends close but your enemies closer
• //What does it say about having a “friend” so close that it is
• // inside the class.
• friend ostream& operator << (ostream &ostr, const Light &light);

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

• //--

• #endif

• 12

But nothing
needs to be done
to a Light object

when it
destructs, so the
method is empty.

[1]

• class Light
• {
• public:
• Light () {Clear ();}
• ~Light () {};

• void Clear ();
• //Just because a language provides friendablity, doesn’t mean
• // friends can be used without proper justification.
• friend ostream& operator << (ostream &ostr, const Light &light);

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

• //--

• #endif

• 13

Every class needs
a method that
clears, resets,
initialises or
empties the

object.

• class Light
• {
• public:
• Light () {Clear ();}
• ~Light () {};

• void Clear ();
•
• friend ostream& operator << (ostream &ostr, const Light &light);

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

• //--

• #endif

• 14

The Clear()
function is more
than one line, so

it is defined in
the source file

(follows).

• class Light
• {
• public:
• Light () {Clear ();}
• ~Light () {};

• void Clear ();
• // No friends – enough said
• friend ostream& operator << (ostream &ostr, const Light &light); [1]

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

• //--

• #endif

• 15

‘friend’ operators
and methods are

those that link
two different
classes, in this

case ostream and
Light

• class Light
• {
• public:
• Light () {Clear ();}
• ~Light () {};

• void Clear ();
• friend ostream& operator << (ostream &ostr, const Light &light);

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

• //--

• #endif

• 16

The return value
of this operator is
a reference to an
output stream.

• class Light
• {
• public:
• Light () {Clear ();}
• ~Light () {};

• void Clear ();
• friend ostream& operator << (ostream &ostr, const Light &light);

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

• //--

• #endif

• 17

The operator we
are overloading is

the standard
output operator.

[1]

• class Light
• {
• public:
• Light () {Clear ();}
• ~Light () {};

• void Clear ();
• friend ostream& operator << (ostream &ostr, const Light &light);

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on; // [1] don’t start with _ in user classes
• };

• //--

• #endif

• 18

All attributes are
prefaced with m_

for ‘member’

• class Light
• {
• public:
• Light () {Clear ();}
• ~Light () {};

• void Clear ();
• friend ostream& operator << (ostream &ostr, const Light &light);

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

• //--

• #endif

• 19

Don’t miss out
the semicolon [1]

• class Light
• {
• public:
• Light () {Clear ();}
• ~Light () {};

• void Clear ();
• friend ostream& operator << (ostream &ostr, const Light &light);

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

• //--

• #endif

• 20

Matches the
#ifndef on

previous slide

END

Light Definition

• There was one method (Clear()), and one
operator (<<) that were more than one line
long and hence were not be defined in the
header class.

• Such methods and operators are defined in a
source file with the same base name as the
header file.

• 21 of 29

• // Light.cpp – implementation is separated from the interface/specification .h file

• //--

• #include "Light.h“

• //--

• void Light::Clear ()
• {
• m_colour = "white";
• m_radius = 0;
• m_on = false;
• }

• //--

• 22

The header file is
included as a

local rather than
system header

file. [1]

• // Light.cpp

• void Light::Clear ()

• {

• m_colour = "white";

• m_radius = 0;

• m_on = false;

• }

• //--

• 23

Light:: indicates
the scope of the

method. In other
words it states

that this method
belongs to the

Light class.

• // Light.cpp
• //--

• void Light::Clear ()
• {
• m_colour = "white";
• m_radius = 0;
• m_on = false;
• }

• //--

• 24

Each attribute
(member

variable) must be
initialised.

END

• ostream &operator << (ostream &ostr, const Light &light)
• {
• ostr << light.m_radius << " cm "
• << light.m_colour << " light is ";
• if (light.m_on)
• {
• ostr << "on";
• }
• else
• {
• ostr << "off";
• }

• return ostr;
• }

• //--

• 25

Add in code to
output

information
about the data.

[1]

Testing
• “Somehow at the Moore School (UPenn) and afterwards, one had

always assumed there would be no particular difficulty in getting
programs right. I can remember the exact instant in time at which
it dawned on me that a great part of my future life would be spent
finding mistakes in my own programs.” – Maurice Wilkes,
Computer Science pioneer and inventor of microprogramming.

• A lot has changed since Wilkes’ keen observation as the amount of
time and resources spent on testing has increased considerably;
there now IT job roles called “Testers” and tools for automated
testing.

• You should not incorporate any subroutine, method, class or
software component into the main build for the application
unless incoming software is fully tested. There is a heavy price to
be paid for ignoring this advice.

• 26 of 29

https://books.google.com.au/books?id=Y459RP6Ru2MC&pg=PA228&lpg=PA228&dq=Somehow+at+the+Moore+School+and+afterwards,+one+had+always+assumed+there+be+no+particular+difficulty+in+getting+programs+right.+I+can+remember+the+exact+instant+in+time+at+which+it+dawned+on+me+that+a+great+part+of+my+future+life+would+be+spent+finding+mistakes+in+my+own+programs&source=bl&ots=FWLvSmVM1R&sig=ACfU3U3opUk5GO35a7yuIsj_LU4dyIBFbg&hl=en&sa=X&ved=2ahUKEwjCqdT8xqnjAhXSR30KHXm0ClQQ6AEwCXoECAcQAQ#v=onepage&q=Somehow%20at%20the%20Moore%20School%20and%20afterwards%2C%20one%20had%20always%20assumed%20there%20be%20no%20particular%20difficulty%20in%20getting%20programs%20right.%20I%20can%20remember%20the%20exact%20instant%20in%20time%20at%20which%20it%20dawned%20on%20me%20that%20a%20great%20part%20of%20my%20future%20life%20would%20be%20spent%20finding%20mistakes%20in%20my%20own%20programs&f=false
https://www.computer.org/profiles/maurice-wilkes

The Test File

• So far we have a header file and a source file which together
completely define a class.

• However we do not have a program because we have no
main() function. [1]

• Nor do we have a test plan and this is very bad!! Test plans
should exist when you have understood the specifications and
before coding. After and while coding, you may want to add
to the existing test plan.

• 27 of 29

Initial Test Plan

• 28 of 29

Test Description (including why
the test is needed)

Actual Test Data Expected Output Passed

1 Check that constructor
initialises the data and check
that output operator works.

NA – default
constructor

0 cm, white light is off

2 Check that setRadius
works

2.5 is sent as
parameter

…fill in what is
expected

Complete the class methods and then we can write a
program that uses the class and follows the test plan. Do
the testplan in a table or in a spreadsheet.

• // LightTest.cpp This is the test program. To compile it needs only the
• // .h file. To link, it will need the .cpp [1]
• //--

• #include "Light.h"

• //--

• int main()
• {
• Light light;

• cout << “Light Test Program” << endl << endl;
• cout << “Test One” << endl;
• cout << light; // [2]

• cout << endl;
• return 0;
• }

• 29

Runs the code in
the constructor,
i.e. the Clear ()

function.

Runs the code in
the friend output

operatorThe destructor
runs when the
block in which
the light was

declared, ends.

LightTest.cpp
• LightTest.cpp is the test program for the light class. [1]

• When it runs it will take the tester through all the tests in the test plan.

• For each test there must be output letting the tester know which test is being

run.

• When it is run, the appropriate ticks are placed in the test plan’s ‘passed’

column.

• It is refactored regularly as the test plan grows.

• It is run in its entirety every time anything is changed in the class.

• Which means that you need to print a new copy of the test plan each time

you make a change.

• It is your proof that the class you have written is without bugs.

• It allows you to say with confidence “this class is finished”.

• 30 of 29

Readings [1].

• Go through the following In Absolute C++. Pages 284-293 very carefully.
Via My Unit Readings (log in) . If the link is not working, contact the
Murdoch University Library.

• Textbook, Chapter on Classes and Data Abstraction

• My Unit Readings: Testing and debugging (Chpt. 8). View Online at library
site. You would struggle to finish the data structure unit/module if you
can’t write test harness and do unit tests for the software that you write.

• Chapter on Pointers, Classes, Virtual Functions, Abstract Classes and Lists,
section on Shallow versus Deep Copy and Pointers; section on Classes and
Pointers: Some Peculiarities.

• Chapter on Overloading and Templates, all the sections till (and including)
section on Function Overloading.

• Reference book, C++ Coding standards: 101 Rules, Guidelines, and Best
Practices, Herb Sutter https://ebookcentral-proquest-
com.libproxy.murdoch.edu.au/lib/murdoch/detail.action?docID=5135988

https://rl.talis.com/3/murdoch/items/65550F3D-84C6-99B6-9DCB-DDF67DB1F3DB.html?lang=en-GB&login=1
https://ebookcentral-proquest-com.libproxy.murdoch.edu.au/lib/murdoch/detail.action?docID=5135988

Object Oriented Terminology
(Revision)

• A class
– is a description of a data type;

– it includes (encapsulates) both data, and algorithms that operate
on the data;

– data should always be protected from being changed by anything
other than one of the class’s own algorithms;

– the data members are also known as attributes or properties;

– the algorithms are called methods rather than functions.

• An object
– is a particular instance (example) of a class.

Note:

It is object oriented
not object

orientated!!!

Object Oriented Terminology
(Revision)

• Polymorphism, overloading, overriding

– In C++, refers to the use of the same name for more than one function or
method;

– In C++ polymorphism is used to specify abstract behaviour which may
have different specific implementations. The version to invoke is
determined at run-time. The abstract behaviour and specific behaviours
are related by an inheritance hierarchy. This is just one example, typical
for C++.

– In C++ a child class can replace (override) a base class’s method with its
own version but this is not sufficient for polymorphism to occur.

– C++ overloading is where the method or function name is the same but
parameters can be different and the method or function to call is
determined at compile time.

– In C++ both methods and operators can be overloaded. Some operators
cannot be overloaded. Check the appendix of the textbook for more
information.

Example Class

• Consider a class simulating a light.

• It might have attributes of:
– int colour

– int radius

– bool switchedOn

• There might then need to be methods that (not minimal) [1]:
– initialised all objects of the light class;
– set each of the attributes;
– returned the current value of each of the attributes;
– output the current value of each attribute to the screen;
– allowed input of values from the keyboard;
– saved the current values to file;
– read the current values from file;
– etc. .. and the “kitchen sink”

The Unified Modelling Language
(UML)

High level UML Class
Diagram: it shows class

names and
relationships only

• While the low level diagram gives useful information,
it results in very cluttered and hard to use diagrams.
But if you are using a tool, then the low level diagram
should be drawn and the more explicit descriptions
can be given in a data dictionary. Don’t forget to use -,
+ or #

• High level UML gives a good overview of your design.
A data dictionary should also be provided.

Low level UML Class
Diagram: it shows all

the attributes and
methods of the class

END

The Data Dictionary [1] [2]

Name Type Protectio
n

Description

Light Simulates a light.

m_colour integer + An integer light colour.

m_radius float - The radius of the light.

m_switchedOn boolean + True if the light is on.

Initialise() procedur
e

Sets the m_colour to white, m_radius to 0 and
m_switchedOn to false.

SetColour(int colour) boolean + If colour is positive it sets m_colour to colour and returns
true. Otherwise it returns false.

SetRadius(float rad) Boolean Etc … If radius is positive it sets m_radius to radius and returns
true. Otherwise it returns false.

Switch() procedur
e

If the light is on, it switches it off. If the light is off it
switches it on.

etc...

Object Oriented Relationships (revision) [1]

• There are 4 object oriented relationships
that we use in this unit. We have
encountered them before.

– Association

– Composition

– Inheritance

– Aggregation

Association
• Refers to the properties of a class. [1]

– Normally, a basic type is depicted as an attribute and
something more substantial is depicted as an
association in an UML diagram. The meaning is still the
same.

• An association is a very low-level generic term meaning
that two classes are “somehow related”.

• At the lowest level this relationship can also mean that
one class “uses” another class somewhere in its
algorithms. But see first point above.

• Depicted with a solid directed line.

Inheritance
• Any class may specialise or extend another class but just

because the language lets you do this does not mean you
should be doing it without considering the abstraction that
you are trying to model. [1]

• We can say that one class “is a” variety of another class.

• We can only do this if it requires all of the data items and
methods declared in the parent (base) class.

Isosceles or equilateral
triangle arrow head,

indicating inheritance, and
showing direction of

dependence.

Solid line (can be
straight or curved)

Inheritance

Composition
• Any class may be composed ─ in whole or part ─ of other

classes.

• An instance must have only one owner object. There is no
sharing with other owner objects.

• We can say that one class “has a” data item that is another
class.

• For example, a class that emulates a simple traffic light would
be composed of three lights, plus 0..2 lights that show arrows.

Symbol meaning
‘composed’

Simple arrow head
showing direction of

dependency.

Cardinality

Solid line (straight
or curved)

END

Aggregation

• Some disagreement as to what this is. [1]

• We will use the following description.

– Sometimes a class includes attributes that are pointers, references or

keys to another class, but does not control the other class.

– For example, a Unit class might contain students and lecturers, but if the

unit is deleted, the lecturers and students are not.

– This is called aggregation.

– In words, one could say that one class refers to another class.

Cardinality: between 0
and n students

Symbol meaning
‘aggregated’

StudentList stores
references to a set of

students

The Unit has exactly
one student list

Unit has a reference to
exactly one Unit

Coordinator

Simple arrow head

Solid line

The Object Oriented Incremental Method

• What classes are required?
– Consider all the data that is to be operated on by the program and

try to split it into ‘things’ e.g. person, student, lecturer, unit, etc.

– As you choose classes, place them in a UML diagram (use
StarUML – it is free). But you need to know how to draw these
diagrams by hand as well.

– Identify containers (groups) of data, for example students,
lecturers, etc.: these will form classes themselves.

• Order the classes from most depended upon to least
depended upon.

• Then for each class (from the one most depended upon),
before coding the next one in the list:
– Code and test its

• Initialiser (constructor)

• Output method [1]

– Code and test its

• Set method(s)

• Get method(s)

– Code and test all other methods one by one.

Exercise

• A program is needed that will read in birth
dates and output a person’s age. What OO
data structures might be required?

• A program is needed to read in time in UTC
(Coordinated Universal Time). The time for
output or display is to be for a given
location (e.g. Perth or Sydney). How would
you design the time class (or classes) for
each location?

Readings

• Textbook: Chapter on Classes and Data
Abstractions. – Please read immediately.

• Reference book: UML distilled: A Brief guide to
the standard object modeling language from
My Unit Readings (chapters 1, 3 and 5)
https://murdoch.rl.talis.com/index.html

https://murdoch.rl.talis.com/index.html

Complexity
• The complexity of algorithms is measured in terms of how long they

take to execute or how much resources they utilise. Our current
interest is on the execution time of the algorithm.

• This in turn is often measured in terms of the number of operations
that are required.

• Complexity is described in two ways: descriptively and using O
notation. [1]

• O notation means ‘in the order of’. It is that value multiplied by some
constant. The order represents the rate of growth. The constant is
something that can depend on a particular computer and can vary
from computer to computer.
– So we don’t consider this constant and only look at the algorithm.

• For all algorithms, the measurement is relative to how many items are
being processed.

• The number of items is designated as ‘n’ and Big-O is a measure of
the upper bounds of the number of operations carried out by the
algorithm as n grows large.

• 49

NAME O notation DESCRIPTION Examples n=1 n=10 n=20

constant time k It takes the same amount of
time (k) no matter how many
elements are being dealt with.
If k is small this is the best case
of all, as it will take the same
time for 1 element as for
10,000.

t = k k k k

logarithmic
time

O(log n) The time taken increases very
slowly as n increases.

t = log10(n) 0 1 1.3

linear time O(n) The time taken increases in a
straight line as n increases.

t = n 1 10 20

O(n log n) The time taken increases faster
than n, but at a slower speed
than the two below.

t = n log10(n) 0 10 26

polynomial
time

O(np) The time taken increases much
faster than does n.

t = n2

t = n3

1

1

100

1000

400

8000

exponential
time

O(cn) The time taken increases at a
much, much higher rate than
n. As n becomes very large,
the time taken becomes
almost infinite.

t = 2n

t = 10n

1

1

1024

1010

1048576

1020

• 50

Comparison at Scale 0-20 (textbook has a nicer diagram in the section on Big-O

Notation)

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11

log n

n

n log n

n 2̂

n 3̂

2 n̂

• 51

Comparison at Scale 0-2500

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11

log n

n

n log n

n 2̂

n 3̂

2 n̂

• 52

The STL Vector (can’t be used for assignment 1 – not the same)

• The STL vector is an array-like template class, but not an array.
• It can be instantiated as any type that you choose, including

ones designed by you.
• It has lots of inbuilt methods, as well as having functions

within the algorithm class that operate on it.
• Note that, like all STL classes, there is no bounds checking

done.
• To use the vector template, you must include the <vector>

header file.
• Accessing a particular element or adding an element to a

vector takes constant time.
• Finding an element or inserting an element at a particular

location within the vector takes linear time.

• 53

• #include <iostream>
• #include <iomanip>
• #include <vector>
• using namespace std;

• //--

• // Declare a new type that is a vector (array) of integers
• typedef vector<int> IntVec;

• // Declare an iterator for this type of structure
• typedef IntVec::iterator IntVecItr;

• // Declare a new type that is a vector of vectors of integers
• // i.e. create a two dimensional array
• typedef vector<IntVec> IntTable;

• //--

•54 of

31

Using the STL vector

• IntVec array;
• IntTable table;

• // Seeding a random number generator
• srand (time(NULL));

• // Adding random data to a vector
• for (int index1 = 0; index1 < SIZE; index1++)
• {
• // Add a number between 0 and 100 to the end of the array
• array.push_back (rand() % 100);
• }

• // Outputting the single array:
• for (int index3 = 0; index3 < SIZE; index3++)
• {
• cout << array[index3] << endl;
• }

•

• // Make a table with identical rows
• for (int index2 = 0; index2 < SIZE; index2++)
• {
• table.push_back (array);
• }

• // Outputting the table in columns
• for (int row = 0; row < SIZE; row++)
• {
• for (int col = 0; col < SIZE; col++)
• {
• cout << setw(5) << table[row][col] << " ";
• }
• cout << endl;
• }

Vector Methods

• Like strings, vectors have many methods.

• Again like strings, most of the methods have multiple
overloads.

• A good listing of information can be found at

http://www.cppreference.com/cppvector/index.html

• Unlike strings, there are only a few operators that apply to
vectors.

• = and == are the two most useful operators that can be
used with vectors.

http://www.cppreference.com/cppvector/index.html

vec.clear () Empties the vector.

vec.empty () Returns true if the vector is empty.

vec.erase (<various>) Erases a part of the vector.

vec.insert (<various>) Add data to the vector.

vec.push_back (data) Add one piece of data to the end of the
vector.

vec.pop_back () Delete the last item in the vector.

vec.begin() Returns an iterator that points to the first
item in the vector.

vec.end() Returns an iterator that points to just after
the last item in the vector.

vec.size() Returns the size of the vector.

vec.swap (vec2) Swaps the contents of the two vectors.

•Only some examples shown – there are more.. [1]

Vector Allocation

• When you push_back data into a vector, space needs to be allocated to the vector. This is done
dynamically and the programmer doesn’t need to worry about creating storage. This is normal for
STL containers.

• The space is not allocated one ‘slot’ at a time.

• Instead it is allocated as follows: [1]

IF size > allocation/2

allocate (size+1) new slots

ELSE

allocate 1 new slot

• This results in the vector always being less than half full, which must give some efficiency
advantage.

• However it means that vectors are space wasters.

• Furthermore, if the vector shrinks later, this does not result in released memory: the memory
allocated stays allocated until the vector goes out of scope.

Example of Iterator Use

• Lets suppose we have a vector containing integers.

• We decide, for some reason, that we want to remove all the
elements that are equal to some particular number, entered
by the user.

• This will require:
– An iteration through the vector

– Erasure of each target as we find it

• The easiest way to do this is using an iterator.

• int target;
• cout << “Enter number to be deleted: “;
• cin >> target;

• IntVecItr itr = array.begin();
• while (itr != array.end())
• {
• if (*itr == target)
• {
• itr = array.erase(itr); [1] [2]
• }
• else
• {
• itr++;
• }
• }

Defined
earlier

erase
returns an
iterator to
the next

item

so we only need to
increment itr if we did

not delete an item

Example

125 256 12 125 324 7 81 125 34

125target

array

itr IntVecItr itr = array.begin();

array.begin() array.end()

Example

125 256 12 125 324 7 81 125 34

125target

array

itr *itr == target ??

array.begin() array.end()

YES

Example

125 256 12 125 324 7 81 125 34

125target

array

itr itr = array.erase(itr);

array.begin() array.end()

Example

125 256 12 125 324 7 81 125 34

125target

array

itr itr = array.erase(itr);

array.begin() array.end()

Example

256 12 125 324 7 81 125 34

125target

array

itr *itr == target ??

array.begin() array.end()

NO

Example

256 12 125 324 7 81 125 34

125target

array

itr itr++

array.begin() array.end()

Example

256 12 125 324 7 81 125 34

125target

array

itr

array.begin() array.end()

Example

256 12 125 324 7 81 125 34

125target

array

itr

array.begin() array.end()

Example

256 12 324 7 81 125 34

125target

array

itr

array.begin() array.end()

Example

256 12 324 7 81 125 34

125target

array

itr

array.begin() array.end()

Example

256 12 324 7 81 34

125target

array

itr

array.begin() array.end()

END•What is the Big-O value for erase on vectors?

The Algorithm Class

• You may have noticed that there were no ‘find’ or ‘sort’
methods for the vector.

• That is because they are part of the STL algorithm class
instead.

• To use this class, you must include the <algorithm> header
file.

• The following code does the same repetitive delete as the
previous code, but uses the ‘find’ algorithm.

• int target;
• cout << "Enter target to delete: ";
• cin >> target;

• IntVecItr itr = find (array.begin(), array.end(), target);
• while (itr != array.end())
• {
• array.erase(itr);
• itr = find (itr, array.end(), target);
• }

• Note how much tighter (shorter) the code is now.

Available Algorithms

• The algorithm class contains over forty algorithms.

• Please see the following links which have examples of use:
http://www.cppreference.com/cppalgorithm/index.html

http://www.cplusplus.com/reference/algorithm/

• The use of them assumes various operators are available for
the data with which they are instantiated.

• This is no problem for a vector of integers or floats etc, as
these already have all arithmetic and logical operators
defined.

• Later on when we code classes, we will have to overload these
operators if we wish to use the algorithm class’s algorithms.

http://www.cppreference.com/cppalgorithm/index.html
http://www.cplusplus.com/reference/algorithm/

Iterators Again

• If you actually have the index of something
you want to delete or erase, you can ‘add’
index to the .begin() iterator to get the
correct thing to delete (or insert).

• For example:
array.erase (array.begin() +

10);

The STL deque class

• Pronounced as “deck”

• The STL deque (double ended queue) class is almost identical to the
vector class, except that it has as extra:

– push_front(const DataType &data)

– pop_front ()

• As well as the ones that work at the back.

• deque can grow dynamically at either end.

• Both of these functions work in constant time.

deque

• Study the deque examples in the textbook
in the chapter on “Standard Template
Library”

Exercise

Using the STL vector as your data structure: [1]

• Write a simple program that will read in
numbers from a file and output the mean
and median to screen.

• Modify the program to output the standard
deviation.

Readings
• Textbook: Chapter on Searching and Sorting algorithms, section on

Asymptotic Notation: Big-O Notation. If this is not found in your
edition of the textbook please see the reference book “Introduction
to Algorithms” chapter on Growth of Functions, section on O-
notation.

• For a more comprehensive coverage of algorithms and their
efficiency, see the reference book, Introduction to Algorithms.
Chapters 1 to 3.

• Textbook Chapter on STL:

– Sections related to the sequence container vector and iterators
related to the sequence container vector.

– The sequence container deque is also found in the above chapter.

– Skip sections on ostream iterator and copy function.

• Website: “C++ Reference”, http://www.cplusplus.com/reference/ [1]

• Website: CPP reference, http://www.cppreference.com/wiki/ [2]

http://www.cplusplus.com/reference/
http://www.cppreference.com/wiki/

